

California Enterprise Architecture Program

SOA White Paper
Web Services

Revision History

06/22/2006 Original Draft

 Page 2 of 21
 California Enterprise Architecture Program

Table of Contents

SOA Documents.. 4

QuickView – Web Services... 5

Web Services... 7
Service .. 7
Message .. 7
Dynamic Discovery .. 8
Web Service Analogy... 8
Web Service Composition.. 10

Atomic Services.. 10
Composite Services .. 10

Web Service Types... 12
SOAP Web services ... 12
REST Web Services ... 12

Web Services with Presentation Logic... 14
Web Services for Remote Portlets (WSRP) ... 14
Asynchronous JavaScript and XML (AJAX)... 14

Web Service Patterns ... 16

Orchestration Example... 16

Web Service Interfaces... 19

Web Service Standards .. 20

 Page 3 of 21
 California Enterprise Architecture Program

SOA Documents

The service oriented architecture advocated by the California Enterprise Architecture Program is
organized into a set of interrelated documents. A master guide serves as the “jumping off point” and
describes in an overview fashion the key parts of SOA.

SOA Master
Guide

SOA Documents

SOA Tools

Business Modeling
Service Modeling
BAM
BPEL

Business Modeling
Service Modeling
BAM
BPEL

SOA Service
Patterns

Consuming a basic service
Federated Interfaces
Composite Services
Enterprise Search
Federated Service Centers
RSS (Real Time Syndacation)

Atomic Web Services
Composite Web Services
Federated Web Services
Orchestrated Web Services
Enterprise Search Service
Federated Search Engines
RSS (Real Simple Syndication)

Web Services

Loosely coupled interfaces
Service, Message, Discovery
Composition Types
Web Service Types
Web Service Interfaces
Web Service Orchestration
Web Service Standards

Loosely coupled interfaces
Service, Message, Discovery
Composition types
Web Service Types
Web Service Interfaces
Web Service Orchestration
Web Service Standards

California
Service
Centers

Consolidated Service Centers
Shared Services
SOA Infrastructure
Enterprise Service Bus
Portals

Business Case
for SOA

View Business as Services (not
stove-piped apps)
Identify & Leverage Shared Services
Common Infrastructure

SOA Security

XML Security for Web Services
Cryptographic Concepts
Digital Signatures, Certificates
Message Integrity, XML Signatures
WS Security, SAML
Federated Identity
XML Firewalls

SOA Roadmap

Documents
Projects
Workgroups

There are six white papers planned to address in depth details of SOA. This whitepaper is Web
Services.

 Page 4 of 21
 California Enterprise Architecture Program

QuickView – Web Services

Web services are a great example of how IT can better support business goals. One way is to
consolidate like business functionality which currently is spread across many applications into one
common shared service. This saves IT costs and makes it much easier to implement a change to a
business process. If the shared services are architected correctly, they can be reused and repurposed to
fit many business scenarios resulting in a much richer user experience. Users can then do more of the
work instead of a state employee doing it on their behalf which should result in fewer errors, faster
recording, and lower costs. The state employees could then be redeployed into more productive jobs
that would result in more value delivered to citizens.

Granular services
that expose core
business functions

Core Business
Applications

Atomic Composite

Orchestrated Federated

Basic Web Service Patterns

Based on ServiceTypes Model

Web Services are a key component of a service-oriented architecture. Shared business services are
implemented as atomic, composite, federated, or orchestrated web services. A composite web service is
made up of two or more atomic web services resulting in a new web service with a single interface
representing both atomic services. That is, they become less granular with a broader purposed interface.
Orchestrated web services are atomic, composite, or federated web services linked together to fulfill
some or all of the steps within a given business process. From a business perspective, this means
changes to business functionality can be implemented more quickly.

 Page 5 of 21
 California Enterprise Architecture Program

For example, atomic web services might be Verify Business Permits, Verify Academic Credentials, and
Criminal Background Check. These three atomic web services might be combined (“composed”) into a
new Check Professional License web service. This composite service might then be linked with other
web services in a Professional License Service which is an orchestration of multiple web services
executed in a particular order which together meet all the requirements of the Apply for Professional
License business process.

Web services are implemented via XML document (“messaging”) interfaces. This is why they are
considered highly interoperable. They are language and platform agnostic, meaning it doesn’t matter
whether they are written in .NET or Java or run on Windows, Unix, or the Mainframe. They simply
must “speak” XML and support web service standards. From a business perspective, this means lower
IT costs because the interoperability issues are far less complex and standards-based.

A lot of acronyms are used throughout this document. Please refer to the Web Service Standards
section for definitions.

 Page 6 of 21
 California Enterprise Architecture Program

Web Services

In order for SOA to be widely adopted, a practical standardized implementation mechanism must exist.
Most Web Services are defined in WSDL (XML) and use standard protocols to communicate
(SOAP/HTTP). So, using Web Services appears to be the practical solution to implementing an SOA.
Alternatively, one could use HTTP-Get or HTTP-Post without SOAP however the data is limited to
named-value pairs. SOAP is much more flexible and can handle complex types such as datasets,
classes, and other objects.

Web Services are comprised of many components (see Web Service Standards in this document). Here
are a few of the most common. Each of these plays an essential role in SOA.

Service
A service in SOA is an application function packaged as a reusable component for use in a business
process. It either provides information or facilitates a change to business data from one valid and
consistent state to another. The process used to implement a particular service does not matter, as long
as it responds to your commands and offers the quality of service you require.

Through defined communication protocols, services can be invoked that stress interoperability and
location transparency. A service has the appearance of a software component, in that it looks like a self-
contained function from the service requester's perspective. However, the service implementation may
actually involve many steps executed on different computers within one enterprise or on computers
owned by a number of business partners. A service might or might not be a component in the sense of
encapsulated software. Like a class object, the requester application is capable of treating the service as
one.

Web services are based on invocation using SOAP messages which are described using WSDL over a
standard protocol such as HTTP. Use of Web services is a best practice when communicating with
external business partners.

For example, one might query a web services repository to find a list of services that provide doctor or
real estate licensing. In this case, it might return Professional License Service, Medical Doctor License
Service, Real Estate License Service, Medical Doctor License Verification Service, Medical Doctor
Education Verification Service, etc.

“Individual” services, such as Medical Doctor License Verification Service and Medical Doctor
Education Verification Service are built with a granular set of functionality. They can be combined into
“composite” services such as Medical Doctor License Service which is coarse-grained. Or, they can be
wrappered to handle requirements that are not included in the service interfaces. (see Web Service
Types)

Message
Service providers and consumers communicate via messages. Services expose an interface which
defines the behavior of the service and the messages they accept and return. According to Gartner, “a
service interface should specify three facets: Identifiers, Formats, and Protocols. This is a network
concept that is used to ensure the loose coupling of network components across the global Internet.

 Page 7 of 21
 California Enterprise Architecture Program

 Page 8 of 21
 California Enterprise Architecture Program

Identifiers are the names or "addresses" of resources, eg URLs. Formats are the message structures, or
in the case of XML, the document structures. And protocols are the rules of interaction between the
consumer and provider, eg the message exchange pattern.” Because the interface is platform and
language independent, the technology used to define messages must also be agnostic to any specific
platform/language. Therefore, messages are constructed using XML documents that conform to XML
schema. XML provides all of the functionality, granularity, and scalability required by messages. That
is, for consumers and providers to effectively communicate, they need a non-restrictive type of system
to clearly define messages; XML provides this.

Because consumers and providers communicate via messages, the structure and design of messages
should not be taken lightly. Messages need to be implemented using a technology that supports the
scalability requirements of services. While XML interfaces are designed to be extensible, having to
redesign entire interfaces due to unanticipated changes will break existing consumers and providers
which can prove to be costly.

Dynamic Discovery
Dynamic discovery is an important piece of SOA. At a high level, one searches the registry, gets a
URL, and downloads the WSDL file. The directory service is an intermediary between providers and
consumers. Providers register with the directory service and consumers query the directory service to
find service providers. Most directory services organize services based on criteria and categorize them.
Consumers can then use the directory services' search capabilities to find providers. Embedding a
directory service within SOA accomplishes the following:

1. Scalability of services; you can add services incrementally.
2. Decouples consumers from providers.
3. Allows for hot updates of services.
4. Provides a look-up service for consumers.
5. Allows consumers to choose between providers at runtime rather than hard-coding a single

provider.

Web Service Analogy
Although the concepts behind SOA were established long before web services came along, web services
play a major role in a SOA. This is because web services are built on top of well-known, platform-
independent protocols. These protocols include HTTP, XML, UDDI, WSDL, and SOAP. It is the
combination of these protocols that make web services so attractive. Moreover, it is these protocols that
fulfill the key requirements of a SOA. That is, a SOA requires that a service be dynamically discovered
and invoked. This requirement is fulfilled by UDDI, WSDL, and SOAP. SOA requires that a service
have a platform-independent interface. This requirement is fulfilled by XML. SOA stresses
interoperability. This requirement is fulfilled by HTTP. This is why web services lie at the heart of
SOA.

Acronyms Practical Examples
UDDI Phone Book
WSDL Contract
SOAP Envelope
HTTP, SMTP, FTP Mail person
Programing (Java, Servlet, ASP.NET, C#) Speech
Schema Vocabulary

 Page 9 of 21
 California Enterprise Architecture Program

XML Alphabet

Simplifying Web Service Terms

The basic steps for locating and calling a web service are illustrated in the following drawing
(from Patricia Seybold Group).

A – Providers register their web services with a common registry, based on a standard such as
UDDI. This includes the location and a detailed description of the service in the form of a
WSDL XML document.

B – An application (or a different web service) invokes the service from provider A.

C – A SOAP message is sent to the end point of the provider service.

E – The service processes the request based on its internal functionality, which is hidden from
the external user.

D – The service returns the results in XML format to the requesting application.

Web Service Composition

Atomic Services
Web services encapsulate information, software or other resources, and make them available over the
network via standard interfaces and protocols. Web service architectures are based on the notion of
building a library of specific atomic services. Generally, the more the more simple and generic the
functionality the better the chances are that the service can be used in multiple applications. For
example, Address Verification Service, Credit Card Payment Service, and Education Verification
Service are candidates for atomic web services.

Composite Services

 Page 10 of 21

A second powerful notion focuses on aggregating atomic web services into larger, less granular
services. Complex web services may be created by aggregating the functionality provided by simpler
ones. This is referred to as service composition and the aggregated web service becomes a composite
web service. For example, Dentist License Verification Service and Dentist Education Verification
Service might be rolled into Dentist Qualifications Service.

 California Enterprise Architecture Program

Composite web services may be developed using a specification language such as BPEL and executed
by a workflow engine. Typically, a composite web service specification is executed by a single
coordinator node. It receives the client requests, makes the required data transformations and invokes
the component web services as per the specification. This mode of execution is known as centralized
orchestration.

In decentralized orchestration of composite web services, there are multiple engines, each executing
a composite web service specification (a portion of the original composite web service specification but
complete in itself) at distributed locations. The engines communicate directly with each other (rather
than through a central coordinator) to transfer data and control when necessary in an asynchronous
manner.

Decentralized orchestration is often referred to as choreography.

 Page 11 of 21
 California Enterprise Architecture Program

 Page 12 of 21
 California Enterprise Architecture Program

Web Service Types
(This section is an excerpt from: XML.COM http://www.xml.com/pub/a/ws/2003/09/30/soa.html)

There are two main styles of Web services: SOAP web services and REST web services.

SOAP Web services
A SOAP web service introduces the following constraints:

1. Except for binary data attachment, messages must be carried by SOAP.
2. The description of a service must be in WSDL.

A SOAP web service is the most common and marketed form of web service in the industry. Some
people simply collapse "web service" into SOAP and WSDL services. SOAP provides "a message
construct that can be exchanged over a variety of underlying protocols" according to the SOAP 1.2
Primer. In other words, SOAP acts like an envelope that carries its contents. One advantage of SOAP is
that it allows rich message exchange patterns ranging from traditional request-and-response to
broadcasting and sophisticated message correlations. There are two flavors of SOAP web services,
SOAP RPC and document-centric SOAP web service. SOAP RPC web services are not SOA;
document-centric SOAP web services are SOA.

A SOAP RPC web service breaks the second constraint required by an SOA. A SOAP RPC Web service
encodes RPC (remote procedure calls) in SOAP messages. In other words, SOAP RPC "tunnels" new
application-specific RPC interfaces though an underlying generic interface. Effectively, it prescribes
both system behaviors and application semantics. Because system behaviors are very difficult to
prescribe in a distributed environment, applications created with SOAP RPC are not interoperable by
nature. Many real life implementations have confirmed this.

Faced with this difficulty, both WS-I basic profile and SOAP 1.2 have made the support of RPC
optional. RPC also tends to be instructive rather than descriptive, which is against the spirit of SOA.
Ironically, SOAP was originally designed just for RPC. It won't be long before someone claims that
"SOAP" actually stands for "SOA Protocol".

REST Web Services
The term REST was first introduced by Roy Fielding to describe the web architecture. A REST web
service is an SOA based on the concept of "resource". A resource is anything that has a URI. A
resource may have zero or more representations. Usually, people say that a resource does not exist if no
representation is available for that resource. A REST web service requires the following additional
constraints:

1. Interfaces are limited to HTTP. The following semantics are defined:

http://www.xml.com/pub/a/ws/2003/09/30/soa.html
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.xml.com/pub/a/ws/2002/02/20/rest.html
http://www.w3.org/TR/wsdl12/
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://webservices.xml.com/pub/a/ws/2003/09/02/typeless.html
http://www.ws-i.org/Profiles/Basic/2003-08/BasicProfile-1.0a.htm
http://www.xml.com/pub/a/ws/2001/04/04/soap.html
http://www1.ics.uci.edu/%7Efielding/pubs/dissertation/rest_arch_style.htm
http://www.w3.org/2001/tag/webarch/
http://www.xml.com/pub/a/ws/2002/02/20/rest.html
http://www.xml.com/pub/a/ws/2002/02/20/rest.html

 Page 13 of 21
 California Enterprise Architecture Program

o HTTP GET is used for obtaining a representation of a resource. A consumer uses it to
retrieve a representation from a URI. Services provided through this interface must not
incur any obligation from consumers.

o HTTP DELETE is used for removing representations of a resource.
o HTTP POST is used for updating or creating the representations of a resource.
o HTTP PUT is used for creating representations of a resource.

2. Most messages are in XML, confined by a schema written in a schema language such as XML
Schema from W3C or RELAX NG.

3. Simple messages can be encoded with URL encoding.
4. Service and service providers must be resources while a consumer can be a resource.

REST web services require little infrastructure support apart from standard HTTP and XML processing
technologies, which are now well supported by most programming languages and platforms. REST web
services are simple and effective because HTTP is the most widely available interface, and it is good
enough for most applications. In many cases, the simplicity of HTTP simply outweighs the complexity
of introducing an additional transport layer. – End of XML.COM referenced material.

One example of a RESTful Web Service is the Yahoo! Local Search service (with results) shown below.
It shows the popular practice of encoding all of the information required to invoke the service in the
URL. As you can see, the entire interaction took place within the browser. Entering the service’s URL
in the browser address line returned an XML document with the name and location of pizza shops near
our office. The simplicity offered by REST makes it attractive in situations where only simple name-
value pairs are required.

http://www.w3.org/2001/tag/webarch/#representation
http://www.w3.org/2001/tag/webarch/#retrieve-representation
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://www.relaxng.org/

In contrast, SOAP would be used where more complex structures are required such as classes and
datasets.

Web Services with Presentation Logic
From a standards perspective, there is work underway on two fronts when it comes to coupling
presentation with services.

Web Services for Remote Portlets (WSRP)
Most web services are designed to handle business logic and data manipulation. However, there is an
emerging standard, Web Services for Remote Portlets (WSRP) that is intended to accommodate
presentation logic. So, utilizing this standard one could use a web service to generate web page content.

RSS (Real Simple Syndication) is an example of REST-style web services with presentation markup in
the results. Some people state the REST style of xml presentation has achieved more success on the
Web than WSRP.

Asynchronous JavaScript and XML (AJAX)
Ajax, shorthand for Asynchronous JavaScript and XML, is a Web development technique for creating
interactive web applications. The intent is to make web pages feel more responsive by exchanging
small amounts of data with the server behind the scenes, so that the entire web page does not have to be

 Page 14 of 21
 California Enterprise Architecture Program

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://en.wikipedia.org/wiki/RSS_(protocol)
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Web_application

 Page 15 of 21
 California Enterprise Architecture Program

reloaded each time the user makes a change. This is meant to increase the web page's interactivity,
speed, and usability. -- Wikipedia

A key part of the AJAX is the XMLHttpRequest object. This object, first implemented by Microsoft as
an ActiveX object but now also available as a native object within both Mozilla and Apple's Safari
browser, enables JavaScript to make HTTP requests to a remote server without the need to reload the
page. In essence, HTTP requests can be made and responses received, completely in the background and
without the user experiencing any visual interruptions.

So, AJAX enabled web applications can make calls to web services to retrieve data in XML format and
update just a section of the web page.

Here are some good links to more information on AJAX:
http://en.wikipedia.org/wiki/AJAX
http://adaptivepath.com/publications/essays/archives/000385.php
http://www.xml.com/pub/a/2005/02/09/xml-http-request.html

http://en.wikipedia.org/wiki/Usability
http://en.wikipedia.org/wiki/AJAX
http://adaptivepath.com/publications/essays/archives/000385.php
http://www.xml.com/pub/a/2005/02/09/xml-http-request.html

Web Service Patterns
There are four basic web service patterns: atomic, composite, federated, and orchestrated. Additionally,
three topic specific patterns have been defined. Two of them suggest ways to handle enterprise search
and the third illustrates using the industry standard RSS (Real Simple Syndication) for publishing
practically any type of public information.

See SOA Service Patterns White Paper for details on each of the above seven patterns.

Orchestration Example
An important specification for enterprise integration and service-oriented architecture is business
process execution language (BPEL). In BPEL, a business process is a large-grained stateful service,
which executes steps to complete a business goal. That goal can be the completion of a business
transaction, or fulfilling the job of a service. The steps in the BPEL process execute activities
(represented by BPEL language elements) to accomplish work. Those activities are centered on
invoking partner services to perform tasks (their job) and return results back to the process. The
aggregate work, the collaboration of all the services, is a service orchestration.

It is important to understand the best uses (and limitations) of BPEL. BPEL offers a nice model to
abstract orchestration logic from the participating services, and configuration using BPEL over (hard
core) coding of service inter-actions is enticing. However, there is processing overhead and
infrastructure expense, so BPEL might not be the best choice for simple orchestrations. As a rule of
thumb, a simple orchestration is comprised of two to five services and has static interaction patterns.

As a language to develop processes, BPEL is good at executing a series of activities, which occur over
time, and interact with internal and external services. These processes may represent IT scenarios, such
as integration, or business scenarios, such as information exchange, or flows of work.

 Page 16 of 21
 California Enterprise Architecture Program

http://www.cio.ca.gov/ITCouncil/Committees/ArchStandards.html

 Page 17 of 21
 California Enterprise Architecture Program

As for limitations, BPEL does not account for humans in a process, so BPEL doesn’t provide workflow
- there are no concepts for roles, tasks and inboxes. In addition, BPEL does not support really complex
business processes, which evolve during their execution, branching out to incorporate new parties and
activities. Lastly, BPEL does not have native support for business activity monitoring (BAM). There
isn’t a data model for measurement and monitoring.

Here is a modified simple Loan Flow from Oracle’s BPEL demonstration samples. The business flow is
as follows:

 1. A customer requests a loan quote
 2. The loan flow process starts and performs a customer credit check

The following picture shows the process from a BPEL designer’s view. In the center of the diagram is
the Loan Flow process. To the right of the loan flow are the invoked (partner) services. At the top left is
the client invocation <receive>.

Using a BPEL design tool, you could click on any of the elements to expand the information and
make modifications. Shown is an expansion of the GetLoanOffer scope. Here are the invocations of
the lending institutions’ services. The structure for the invocations is <flow>, indicating concurrent re-
quests. When both institutions have replied, the GetLoanOffer scope completes, and processing
continues to the SelectOffer scope.

This diagram shows the Loan Flow example from a BPEL designer’s view. The
diagram is an an-notated composite of screen shot clips from Oracle’s BPEL PM

tool.

The source code view of this process is shown next. Think of this as the toggle from the design

view. The code is a snippet of the actual process, focusing on the partner links and GetLoanOffer scope.
In the partner links, you’ll notice the first entry is for our BPEL process, with a myRole of
“LoanFlowProvider,” and partnerRole of requestor. The called services partner links follow; note the
roles are switched. The myRole is provider, and partnerRole is requestor.

For each partner link, the partnerLinkType element points to the specific operation to be invoked, as
described by the WSDL (portType) of the individual service.

Looking at the GetLoanOffer scope, you can see nested structured activities. There is an outer <se-
quence> to assign the request data prior to making the invocations, and an inner <flow> that allows the
invocations to be concurrent.

 Page 18 of 21
 California Enterprise Architecture Program

The final activity in the process is to provide the requester with the loan offer information.

Web Service Interfaces
There are many cases where you might want to specify a web service interface. Multiple web services
could then implement the interface ensuring consistency. This design pattern is generally used in
federated services. For example, one might create a Professional License interface which would specify
the web methods and their details for determining qualifications. This interface could then be
implemented by Dentist Licensing, CPA Licensing, and Real Estate Licensing services.

An interface is used when you want to standardize a particular piece of functionality, and then apply that
functionality to different scenarios.

 Page 19 of 21
 California Enterprise Architecture Program

 Page 20 of 21
 California Enterprise Architecture Program

Web Service Standards
Web services are still evolving and as a result there are a large number of standards. It is likely that
some of the standards will be combined. But for now, here is a quick list of some of the more important
ones:

Standards Organizations:
W3C - World Wide Web Consortium http://www.w3.org/

HTTP, CSS, SOAP, XML, XPath, XSL, WSDL, WS-Addressing, WSCI, WS Choreography Model,
plus others.

OASIS – Organization for the Advancement of Structured Information Standards http://www.oasis-
open.org/home/index.php

WS-BPEL, ADVL, CAP, DSML, ebXML, XACML, SAML, SPML, UDDI, UBL, WS-Reliability,
WSRP,
WS-Security, WSDM plus others.

WS-I – Web Services Interoperability Organization - Provides interoperability standards in the form of
Profiles. http://www.ws-i.org/ Current profiles include:

• Basic Profile (V1.0, V1.1, Simple SOAP Binding Profile 1.0)
• Attachments Profile 1.0
• Basic Security Profile (V1.0, Security Scenarios)

Liberty Alliance - http://www.cio.ca.gov/ITCouncil/Committees/ArchStandards.html

Standards:
SOAP – Originally: Simple Object Application Protocol. Now, informally referred to a SOA Protocol.
XML – eXtensible Markup Language
WSDL – Web Services Description Language
UDDI – Universal Description Discovery Integration
WSIL – Web Services Inspection Language, may eventually replace UDDI.
WS-Reliability & WS-ReliableMessaging
WSRP – Web Services for Remote Portlets
AJAX – Asynchronous JavaScript and XML

Process Standards:
BPEL – Business Process Execution Language (Microsoft, IBM). Note, now OASIS standard.
WSCL – Web Services Conversation Language (HP)
WSCI – Web Services Choreography Interface (BEA, Intalio, SAP, Sun)
BPML – Business Process Modeling Language (W3C)
BPSS – Business Process Specification Schema (ebXML)
WSFL – Web Services Flow Language (IBM)
XLANG - (Microsoft)

Transaction Standards:
WS-Transaction (WS-BusinessActivity and WS-AtomicTransaction).
WS-Coordination

http://www.w3.org/
http://www.oasis-open.org/home/index.php
http://www.oasis-open.org/home/index.php
http://www.ws-i.org/
http://www.cio.ca.gov/ITCouncil/Committees/ArchStandards.html

 Page 21 of 21
 California Enterprise Architecture Program

Security Standards:
WS-Security
WS-Trust
WS-Provisioning
WS-Federation
WS-Authorization
WS-Policy
WS-Privacy
SAML (Secure Access Markup Language)
STS (Secure Token Service)

	
	 SOA Documents
	
	 QuickView – Web Services
	 Web Services
	Service
	Message
	Dynamic Discovery
	Web Service Analogy
	Web Service Composition
	Atomic Services
	Composite Services
	
	
	

	Web Service Types
	SOAP Web services
	REST Web Services

	Web Services with Presentation Logic
	Web Services for Remote Portlets (WSRP)
	Asynchronous JavaScript and XML (AJAX)

	 Web Service Patterns
	Orchestration Example
	Web Service Interfaces
	Web Service Standards

